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General Proof Theory of 
Classical Propositional Logic: 

One Size Fits All 

Allard M. Tamminga* 

Abstract 

In this paper both a general Gentzen-style system of natural deduction and a gen
eral Gentzen-style sequent calculus will be presented, with which-according to the 
interpretation of the variables for logical symbols-exactly all tautologies, satisfiable 
formulas, rejectable formulas, and contradictions of classical propositional logic can 
be derived. In this way, it is shown that systems deriving these classes of formulas 
do not need alternative proof-structures, as supposed in all the literature on theories 
of rejection. 

1 Theories of Rejection 

Jan Lukasiewicz was the first to introduce the concept of 'rejection' into formal logic. In 
the 1921 paper 'Two-valued Logic'1 Lukasiewicz followed Brentano in adding to Frege's 
idea of assertion Brentano's idea of rejection. In his early works, Lukasiewicz argued that 
a proposition must be rejected if and only if it is false, parallel with Frege's condition 
for the assertion of a proposition. Later on, starting with Aristotle 's Syllogistic from the 
Standpoint of Modern Formal Logic, Lukasiewicz redefined the concept of rejection to 
cover not only false propositions, but also propositions which are false under at least one 
interpretation. 2 Furthermore, he introduced syntactical techniques to derive all rejectable, 
i.e., non-tautological, statements. By using the symbol '1-' for asserti9n (indicating the
oremhood) and 'lf' for rejection (indicating non-theoremhood), what Lukasiewicz added 
to classical propositional logic (GPL) is the following: 

Axiom 
Detachment 
Substitution 

lf p, where p is a fixed propositional variable 
If 1- c/>-+'l/J and lf 'l/J, then lf c/> 
If lf 'l/J and 'l/J can be obtained from c/> by substitution, then lf c/>. 

This system is first described in Lukasiewicz [5], where Lukasiewicz also propounded a 
complete system of rejection for Aristotle's syllogistics, after some technical problems had 

. been solved by Jerzy Slupecki. Lukasiewicz also tried to construct systems of rejection 
for the intuitionistic propositional logic (IPL) and for his own version of modal logic. 

*Department of Philosophy, University of Amsterdam, Nieuwe Doelenstraat 15, 1012 CP AMSTERDAM. 
1Cf. Lukasiewicz [4]. 
2Hence, it would be more appropriate to speak of theories of rejectability, which includes a modal 

component, instead of theories of rejection, but I will stick to the traditional nomenclature, coined by 
Lukasiewicz. 
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Untii recently, all proposed rejection systems suffer badly from lack of elegance, be
cause of some awkward. strongly semanticai motivated derivation rule. 3 For classical 
propositional logic more elegant rejection systems have been constructed by Goranko [1] 
and Tamminga [7]. Still, the proof-structures of these systems deviate from the standard 
ones. 

In this article I make the following claim: In classical propositional logic, no alterna
tive proof-structure is needed for the construction of syntactical systems characterizing 
the satisfiable, the rejectable, or the contradictory formulas. I shall establish this claim by 
constructing two instances of it-the general Gentzen-style system of natural deduction 
ND and the general Gentzen-style sequent calculus SC-and by proving their equipol
lence, correctness, and completeness. Although this paper has been motivated primarily 
by the study of theories of rejection, in the proofs all the attention is devoted to theories of 
satisfiability (the proofs for theories of rejection are, surprisingly, completely analogous). 
This procedure is adopted for the sake of readability. 

2 Language and Semantics 

In order to establish the claim made in the preceding section, we need a generalization 
of the concept of classical validity, such that satisfiability and classical validity may be 
expressed by one and the same definition. Its dual4 is adequate for rejectability and 
'anti-validity'. Firstly, we need some preliminary definitions. 

Definition 2.1 The alphabet of GPL consists of 

(i) 
(ii) 

(iii) 

Propositional Variables 
Logical Symbols 
Auxiliary Symbols 

P denotes the set of propositional variables. 

P1,P2,p3, · · · 
-., /\,V, T, l_ 

) ' (. 

A denotes the set of atomic formulas, i.e., P U {T, l_}. 
[, denotes the set of literals, i.e., PU { -.qi : <PEP}. 

Definition 2.2 The set of formulas of GPL, denoted by F, is the least set containing A 
that is closed under the operations -., /\,V. 

Definition 2.3 Let r <:;;; F be a multiset, where 0 denotes the empty multiset, and let 
f=b1, ... ,f'k}. Then 

(i) 
(ii) 

vr 
/\f 

/'1 V··· V /k, 

/'1 /\ · · · /\ rki 
(V0 := T) 
(/\0 := 1-). 

Definition 2.4 The valuation function for a classical model M is defined as usual. For 
multisets r <:;;; F we define: 

(i) 
(ii) 

Vi.1(r) = 1 
VM(r) = 0 

VcjJ(cjJE f--+ V,w(<P) = 1) 
V<P(<PE r--+ V,w(<P) = o). 

3For a synopsis of the history of theories of rejection for GPL, the reader may have recourse to 
Tamminga [7], which lacks a discussion of the recent system in Ishimoto [3]. 

4To the best of my knowledge, G. Stahl is the first logician who observed that in classical logic 
tautologies and contradictions are always each others duals. Cf. Stahl [6]. 
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Definition 2.5 Let r ~ F be a multiset and </> E F and M be a variable over classical 
models. Then 

(i) r f= </> := VM(VM(r) = 1-tvM(</>)=1) 
(ii) r 9 </> := \fM(VM(r) = 0 -t VM(</>) = 0). 

Using this standard notion of classical validity and its counterpart ('anti-validity'), we are 
able to define a more general notion of validity, which is needed to cover the notions of 
'satisfiability' and 'rejectability'. I coin this new type of validity 'validity with respect to 
a literal basis', respectively 'anti-validity with respect to a literal basis'. 

Definition 2.6 (Validity) Let r ~ F be a multiset and </> E F and ß ~ L and M be a 
variable over classical models. Then 

(i) ß; r F=* </> := 3M(VM(ß) = 1) and ß, r F </> 
(ii) ß; r 9* </> := 3M(VM(ß) = 0) and ß, f 9 </>. 

The following Lemma shows that validity with respect to a literal basis is more general 
than standard classical validity indeed, and that, in case the multiset of assumptions r is 
empty, our new definition implies that the formula </> is satisfiable (iii), or rejectable (iv). 
So, it is possible to uphold all the merits of the standard notion of classical validity, but 
at the same time having the semantical notion of satisfiability (rejectability) incorporated 
in the definition. 

Lemma 2.7 Let r ~ F be a multiset and </> E F and ß ~ L. Then 

(i) 0;r f=* </> ~ rf=</> 
(ii) 0;r9* </> ~ r9 </> 

(iii) ß;0 F=* </> ==> 3M(VM(<f>) = 1) 
(iv) ß;09* </> ==> 3M(VM(<f>) = 0). 

Proof. This follows immediately from Definition 2.5 and Definition 2.6.• 

3 Natural Deduction 

In this section, a general Gentzen-style system of natural deduction-denoted by ND
will be defined. The system is general in the sense that it is written in a neutral notation, 
which allows for specific interpretations, exploiting the full symmetry between satisfiabil
ity and rejectability rules. The system uses uninterpreted 'variables' for logical symbols 
of GPL. Interpretations of these 'variables' give rise to two different subsystems: a sys
tem deriving satisfiable formulas and a system deriving rejectable formulas. Moreover, 
if we skip some of the axiom schemes which are available in these subsystems, we ob
tain two different subsubsystems: a system deriving tautologies and a system deriving 
contradictions. 

In the remainder of fae paper it will be shown that the general system ND covers the 
very same notions of validity as described above. I adopt the usual conventions governing 
the construction of proof-trees and the handling of assumptions in proof-trees. For a 
detailed exposition of these conventions, the reader may have recourse to Troelstra and 
Schwichtenberg [8), 20-22 and 29-34. Before we proceed to the definition of ND, we need 
an example to illustrate the preliminary definitions. 

Let V1 be the following proof-tree, showing that {-.pi, -.p2}; 0 -1* -.(p1 Ap2 ) V-.p2 . In 
other words, -.(p1 Ap2)V-.p2 is anti-valid with respect to the literal basis {-.pi,-.p2}, as 
we shall see later on. 
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[•P1] [p1]v E [•P2] [pz]w 
[p1 /\pz]u T ' T --.E 

/\Ev,w 

T •lu 
•(p1/\P2) 

•(P1 /\pz) V•p2 
[•P2] VI 

An informal reading of what happens in this proof-tree is the following: If we assume that 
P1/\P2 is false, then p1 is false or P2 is false. We can construct a model Min which •p1 
is false. Assume that p1 is false in M. Then T is false in M. We can construct a model 
M' in which •p2 is false. Assume that p2 is false in M'. Then T is false in M'. As the 
models M and M' do not ascribe confl.icting truth values to the propositional variables 
p1 and p2, there is a model M" in which both •p1 and •p2 are false. In this model M", 
the assumption that p1 /\p2 is false leads to a contradiction. Therefore, •(p1 /\p2) is false 
in M". Furthermore, we can construct a model M"' in which --.p2 is false. As the models 
M" and M"' do not ascribe confl.icting truth values to the propositional variables p1 and 
p2, there is a model M"" in which both •(p1/\p2) and --.p2 are false. Then, in model M"" 
the formula •(p1/\p2)V•p2 is false. 

Let us now give a more formal definition, which will be used in the branching rules in 
the definition of the system ND, of jointly consistent sets of literals: 

Definition 3.1 Let A ~ .C and B ~ .C. Then 

A ~ B, if --.:3</J( {.p, •</J} ~AUB), 

in other words, A and B are jointly consistent. 

In the proof-tree above, the sets {•pi} and { --.p2 } are jointly consistent. 
Let us recall that, in natural deduction trees, two assumptions [.p]u and [wF are iden

tical iff both <P = 'ljJ and u = v. Keeping this in mind, we define the following functions 
from proof-trees V to sets of formulas: 

Definition 3.2 Let V be a proof-tree in ND. Then 

(i) [D] is the set of all leafs of D of the form [<P] 
(ii) [D] is the multiset of all different open assumptions of D. 

In the example above, [D1] = { --.p1, --.p2} and [V1] = 0, as all assumptions are closed. In 
the system ND defined below all proof-trees V lead to a (possibly empty) set of literals 
[D]. 

Now, we give a definition of the system ND. Beforehand, we draw attention to the fact 
that branching rules can only be applied on the condition that the sets of axioms of the 
types (b) and ( c), mentioned in Definition 3.3, used in the subtrees are jointly consistent. 
The additional axioms (b) and ( c) allow us to construct literal by literal an auxiliary 
model, in which the derived formula, given the truth (respectively the falsity) of the open 
assumptions, is true (respectively false). In this way, satisfiability and rejectability can 
be modelled proof-theoretically. 
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Definition 3.3 The system ND consists of exactly the following axiom schemes and 
rules: 

(i) Axiom Schemes 

(a) 0 
(b) [</>], 
(c) [•</>], 

if</>EP 
if </>EP. 

(ii) Rules 
.. 

[<f>]u 
V 

_§2_ ,J 
·<f> u 

V 

<f> <:fJ '1/J <:fJE1 
<f> 

[•<f>]u 
'D1 'D2 

V ·<f> <f> 
_!2_9C 8 

-.E, if [V1] "' ['D2] 
<f> u 

V 'D1 'D2 
<f> (fJ '1/J 

<:fJE2 
<f> '1/J (f)l, if ['D1] "' ['D2] 

'1/J <f> (fJ '1/J 

[<f>]u ['1/J]v 
'D1 'D2 V3 

</>0'1/J X X if ['D1] "' ['D2] "' [V3] "' ['D1] 
X 

0Eu,v1 

V V 
<f> '1/J ---011 ---012 

</>0'1/J </>0'1/J 

Substituting the usual logical constants T, ..l, /\,V in a systematical way for the uninter
preted variables 0, 8, (fJ, 0, we obtain the subsystems NDT* and NDC*. The skipping 
of the axiom schemes (b) and ( c) in these systems gives rise to the subsubsystems NDT 
andNDC: 

Definition 3.4 The systems NDT*, NDT, NDC*, and NDC are defined as follows: 

(i) NDT* 
(ii) NDT 

(iii) NDC* 
(iv) NDC 

.- ND[0fTJ[8/.t][EB/A][®/v] 

.- NDT* without axiom schemes (b) and (c) 

.- ND[0f.t][8fTJ[EB/v][®/A] 
NDC* without axiom schemes (b) and ( c). 

Of course, if no axioms of the types (b) and (c) are availabe, then the conditions on -.E, 
(f)l, and 0E become vacuous. I include the asterisk * in the names for the systems and 
in the sign for derivability to indicate that the axioms enabling us to derive satisfiable 
and rejectable formulas · are available in these systems. I coin this type of derivability as 
'derivability with respect to a literal basis'. As we shall see later on, NDT* derives all 
satisfiable formulas, NDT derives all tautologies, NDC* derives all rejectable formulas, 
and NDC derives all contradictions. 
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Definition 3.5 Let r ~ F be a multiset and </JE F. Then 

(i) r 1- </> :- There exists a derivation V of </> from r in NDT 
(ii) .6.; r 1-* </> := There exists a derivation V of </> from r in NDT*, where .6. = [V] 

(iii) .6.; r -1* </> :- There exists a derivation V of </> from r in NDC*, where .6. =[V] 
(iv) r -1 </> :- There exists a derivation V of </> from r in NDC. 

Lemma 3.6 Let f~F be a multiset and </>EF. Then 

(i) r 1- </> ~ 0; r 1-· </> 
(ii) r -1 </> ~ 0; r -1· <f>. 

Proof. This follows immediately from Definition 3.4 and Definition 3.5.• 

4 Correctness of ND 

The informal explanation of the proof-tree just before Definition 3.1 already contains an 
argument for the correctness of the used rules. This argument will be formalized in the 
following Lemma, covering all the rules of NDT*. Because of its facility, the proof is left 
to the reader. 

Lemma 4.1 Let rj ~ F be multisets for j E {1, 2, 3} and </>, 'l/J, x E F and .6.; ~ .C for 
iE {1, 2, 3}. Then 

(i) .6.; r F=* </>, if </>E.6. and ::3M(VM(.6.) = 1) 
(ii) .6.; r F=* </>, if </>Ef and ::3M(VM(.6.) = 1) 

(iii) .6.· r f=* T 
' ' 

if ::3M(VM(.6.) = 1) 
(iv) .6.; r, </> F=* J_ ~ .6.; r F=* •</> 
(v) .6.; r, •</> F=* J_ ~ .6.; r F=* </> 

i;,; r, p· ~1 } 
(vi) .6.2; f2 F=* </> ~ .6.1,.6.2;f1,f2 F=* J_ 

.6.1 ~ .6.2 
(vii) .6.; r F=* </> /\ 1/J ~ .6.; r F=* </> 

( viii) .6.; r F=* </> /\ 1/J ~ .6.; r F=* 1/J 
ß,;r, p· 1 } 

(ix) .6.2; r 2 F=* 1/J ~ .6.1,.6.2;f1,f2 F=* <f>/\'lj; 
.6.1 ~ .6.2 
ß,;r,p·1v,, } 

(x) 
.6.2; f 2, </> f=* X 

~ .6.1, .6.2, .6.3; f 1, f2, f3 f=* X 
.6.3;f3,'lj; f=* X 
.6.1 ~ .6.2 ~ .6.3 ~ .6.1 

(xi) .6.; r F=* </> ~ .6.; ff=*</> V 'lj; 
(xii) .6.; r F=* 1/J ~ .6.;f f=* </>V'lj;. 

Using Lemma 4.1, we can prove the correctness of NDT* by a routine induction on the 
depth of the derivation V for </> from r. If we prove the analogue of Lemma 4.1 for ~ *, we 
can prove the correctness of NDC* in the same way. This gives us the following theorem: 
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Theorem 4.2 (Correctness of NDT* and NDC*) Let rs:;;F be a multiset and cpEF 
and ß s:;; .C. Then 

(i) ß; r r-· <P ==? ß; r f=* <P 

(ii) ß; r --1· <P ==? ß; r ~· c/J. 

As a corollary, of course, the systems NDT and NCC, which are special cases of NDT* 
and NDC*, are correct: 

Corollary 4.3 (Correctness of NDT and NCC) Let rs:;;F be a multiset and cpEF. 
Then 

(i) r r- <P ==? r F= <P 

(ii) r --1 <P ==? r ~ c/J. 

Proof This follows immediately from Lemma 3.6, Lemma 2.7(i)(ii), and Theorem 4.2.• 

5 Sequent Systems 

In this section a general Gentzen-style sequent calculus-denoted by SC-shall be set 
forth. 1 conform to the usual conventions governing the construction of proof-trees for 
sequent systems. A detailed exposition of these conventions can be found in Troelstra 
and Schwichtenberg [8], 23-25, 51-58, and 65-71. In the remainder of this section r and 
I: refer to multisets, whereas ß refers to sets. Both the empty set and the empty multiset 
are represented by 0, but the context gives the symbol an unambiguous interpretation: 
only in the context of literal bases ( i.e., on the left of the semicolon), 0 denotes the empty 
set. 

Definition 5.1 The system SC consists of exactly the following axiom schemes and rules: 

(i) Axiom Schemes 

(a) 0;cp=?cp 
(b) 0; 8=?0 
(c) 0; 0=?0 
( d) ß; 0 =? 0 if ß is a consistent set of literals. 

(ii) Structural Rules 

ß;f=;.I; Lß, if•c/JEß 
ß; r, cfJ=;.I: 

ß; r=;.I: LW, if ruI:yf0 
ß;f,cp=;.I; 

ß; r, c/J, c/J=? I: 
ß; r, cp=? I: LC 

ß;f=?I:. Rß, if cpEß 
ß; f=?I:, <P 

ß; r=;.I: RW · if ruI:yf0 
ß; f=?I:, <P ' 
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(iii) Logical Rules 

ß;f=;.I;,q) 
~~-~-L--. 
ß; r, --.ef> * I; 

ß; r, ef>=;. I; 
" R--. u; f=;.I;,--.q) 

ß;f,q)i=;.I; LEB, i=(O,l) 
ß; f, ef>o EB ef>1 =? I; 

ß 1;f=;.I;,q) ß2;f=;.I;,1}1 REB, ifb.1~6-2 
6-1, 6-2; f=;.I;, ef>EB7/J 

ß 1;f,q)=;.I; ß2;f,7f;=;.I; L0, ifb.1~6-2 
6-1, 6-2; r, ef>01}1=;.I; 

ß;f=;.I;,q)i R0, i=(O,l) 
ß; f=;.I;, 4>004>1 

Substituting the usual logical constants T, 1-, A, V in a systematical way for the uninter
preted variables 0, 8, EB, 0, we obtain the subsystems SCT* and SCC*. The skipping of 
the axiom scheme (d) in these systems gives rise to the subsubsystems SCT and SCC: 

Definition 5.2 The systems SCT*, SCT, SCC*, and SCC are defined as follows: 

(i) SCT* 
(ii) SCT 

(iii) sec· 
(iv) sec 

- SC[0fT][8f.i][Ell/A]['%] 
·- SCT* without axiom scheme (d) 
._ sC[0/t][e/T][Ell/v]['%] 

sec· without axiom scheme (d). 

Of course, if no axioms of the type (d) are availabe, then the conditions on LW, RW, 
R EB, and L 0 become vacuous, whilst Lß and Rb. become useless. Note that SCT is a 
standard Gentzen system for GPL, as the Merge rule follows from the weakening rules of 
SCT. 

Once again, derivability with respect to a literal basis will be defined, now with respect 
to the sequent systems previously defined. 

Definition 5.3 Let r, I; ~ F be multisets and let ß ~ L. Then 

(i) 
(ii) 

(iii) 
(iv) 

f- f=;.I; 

f-* ß; r * I; 
-j* ß;f=;.I; := 
-j f=;.I; 

There exists a derivation V of 0; r =;. I; in SCT 
There exists a derivation V of ß; r =;. I; in SCT* 
There exists a derivation V of ß; f=;. I; in SCC* 
There exists a derivation V of 0; f=;.I; in SCC. 

Derivability in SCT and SCC is, of course, equivalent to derivability with respect to an 
empty literal basis in SCT* and SCC*, respectively. Stated formally: 

Lemma 5.4 Let r, I; ~ F be multisets. Then 

(i) f- f=;.I; ~ f-* 0; f=;.I; 
(ii) -j f=;.I; ~ -j* 0; f=;.I;. 

Proof. This follows immediately from Definition 5.2 and Definition 5.3.• 
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6 From SC to ND 

In this section, we shall prove that for every SC-derivation there is a corresponding 
ND-derivation. The proof is by a quite straightforward induction on the depth of the 
SC-derivation. 

Theorem 6.1 Let f,L;~F be multisets and b..~.C. Then 

(i) 1-• b..;f=?I; =? D..;r 1-* VI; 
(ii) -j*ß;f=?I; =} b..;f-l*f\I;. 

Proof. (i) By induction on the depth n of the derivation of 1-* b..; f=? I;. 
Basis: n=l. Then 1-* b..;f=?I; is an axiom ofthe type (a), (b), (c), or (d). As the 

other cases are trivial, let us consider case ( d). Then we must have the axiom b..; 0 =? 0. 
According to Definition 2.3 we have V 0 = T, the following derivation scheme-which must 
be repeated for every element in b..-does the job (let us assume that if; E b..): 

T [</>] 
T /\if; 

T 

with [V]= { </>} and [V]= 0. 

Induction Hypothesis: Let the proposition to be proved be correct for n-1. 
Induction Step: Now, we have to split cases according to the last derivation rule 

which was used to derive b..; r =? L;. Leaving the other cases aside, we shall prove the 
most difficult case: R /\. 

(Case R/\) It is given that 1-* b..;f=?I;. Let I;=I;'U{if;/\'l/J}. Hence, there must be a 
derivation for the following sequent: 

which has been constructed by R /\ from the sequents: 

such that b.. = b..1 Ub..2 and b..1 ~ b..2. Because of the induction hypothesis, the following 
assertions are true: 

(1) D..1; r 1-· v I;' v q;. 
(2) D..2; r 1-• v I;' v ,,p 
(3) b..1 ~ b..2, 

which means there are derivations V1 and V 2, such that 

and 

Derivations V 1 and V 2 can be extended to the following derivation V* (the correctness of 
the merging of these proof-trees is guaranteed by [V1] ~ [V2]): 
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[cW [·1W 
'D2 [V L;']w <f;/\'!jJ 

'Di [VL;']u VL;'V'!/J VL;'V(ef;/\'!/J) VL;'V(ef;/\'!/J) w x 

V L;' V <P V L;' V ( <P /\ '!/J) V L;' V ( <P /\ '!/J) , 
----'-----------'----'-'------'---'------------'---------'---_____:._:_U,V 

V L;' V (ef;/\'!/J) 

with ['D*] = ß and ['D*] = r. 
This implies the desired conclusion: ß; r f-* V L;. 

The procedure of proving (ii) is completely analogous to (i).• 

7 Completeness of SC 

In the remainder of this paper we shall prove that all systems discussed so far are complete 
with respect to their intended semantics. To close the circle of theorems needed, we have 
to prove the following theorem. In the proof of the theorem we adapt a method of proving 
completeness of sequent calculi described by Heindorf [2], 83-90. 

Theorem 7 .1 Let r, L; <;;; F be multisets and ß <;;; .C. Then 

(i) D.;r ~· VL; ==;. f-* ß;f=?L; 
(ii) ß; r =I* V L; ==;. -!* ß; r* L;. 

Prnof. I shall prove the converse of (i). Let it be given that lf* ß; f=?L;. First, we fix 
the order of the given sequent: In the course of this proof r and L; and their correlates 
shall refer to ordered multisets. If ß is inconsistent, then we are done, as ::3M(VM(ß) = 1) 
turns out tobe false. Let us suppose, then, that ß is consistent. Now, we have to make 
sure that ß; r w L;, that is ::3M(VM(ß, r) = 1 /\ VM(V L;) = 0), because ::3M(VM(D.) = 1). 
We shall build such a model with the aid of an infinite sequence of sequents, which is 
defined inductively as follows: 

n=D ß; fo=?L;o - ß; f=}L; 

n>O ß;fn=?L;n ß; r n+l =} L;n+l 
n odd ß; 0=?L;n f--7 ß; 0=?L;n 

ß; f', cj>=?L;n and c/>EA f--7 ß; <f;, r' =} L;n 
ß; f', •</;=? L;n f--7 ß; •</;, r' =} L;n, <P 
ß; r', <f;/\'!/J=?L;n f--7 ß; <f;/\'!jJ, <f;, '!/J, r' ~ L;n 

ß; f', <f;V'!jJ=?L;n f--t{ß;ef;V'!/J,ef;,f:=?L;n or 
ß; c/>V'!/J, '!/J, f =?L;n 

n even ß;fn=?0 f--7 ß; fn=?0 
ß;fn=?<f;,L;' and <f;EA f--7 ß;fn=?L;',<f; 
ß; r n =? •<f;, L;' f--7 ß; <f;, r n =} L;'' •<P 

fl;fn=?</J/\'!/J,L;' {ß;fn=?L;',<f;,<f;/\'!/J or 
f--7 ß; r n =} L;', '!/J, <f;/\'!jJ 

ß; fn=?</JV'!/J, L;' f--7 ß; f n =? L;', <f;, '!/J, ef;V'!/J 

The reader may easily show that lf* ß; r n+i =? L;n+l · In case an alternative is offered, this 
must be true for at least one of the alternatives. Choose the alternative for which this is 
true. We also can make the following observations: 

(a) If ef;Efk (ef;EL;k), then for all n with n"?.k holds ef;Efn (ef;EL;n). 
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(ß) If c/J Er k ( c/J E Ek), then there is an odd ( even) n with n;?: k such that c/J appears as 
last (first) formula in r n (En)· 

Let r 00 = U:;,"=0 r n and Eoo = U:;,"=0 En. Now, we can prove the following assertions to be 
true: 

( 8) ß U (r 00 n .C)_ is consistent. 

In order to prove assertion ('r), let US suppose that (ß ur oo) n Eoo f- 0. Then there must 
be a c/J such that (a) c/JE (r 00 n E00) or (b) c/JE (ß n E00). 

Suppose that (a). Then there is a sequent ß; r n =? En such that c/J Ern and c/J E En. 

But then we can construct the following derivation, which is impossible according to what 
we proved above (double lines indicate some (possibly zero) applications of the structural 
rules LW and RW): 

Suppose that (b ). Then there is a sequent ß; r n =? En such that </> E ß and </> E En. 

We have either </>='l/J where 'lf;E'P or <f>=-.'lf; where 'lf;E'P. But then we can construct one 
of the following derivations, either of which is impossible according to what we proved 
above: 

ß;0=?0 Rß 
ß;0=?'lf; 

ß; f n=?En 

Therefore, (ß Ur 00 ) n E00 = 0. 

ß;0=?0 Lß 
ß;'lf;=?0 R-. 

ß;0=?-.'lj; 

ß; f n =? En 

In order to prove assertion ( 8), let us suppose that ß U (r 00 n C) is inconsistent. Then 
there must be a </>such that (a) </>E ß and -.<f>E (r 00 n C) or (b) -.<f>Eß and </>E (r 00 n C). 

Suppose that ( a) Then there is a sequent ß; r n =? En such that </> E ß and -.<f> Ern and 
</>E'P. But then we can construct the following derivation; which is impossible according 
to what we proved above: 

ß;0=?0 Rß 
ß;0=?</> 

----L-. 
ß;-.</>=?0 

ß; fn=?En 

Suppose that (b) Then there is a sequent ß; r n =? En such that -.<f> E ß and </>Ern and 
</>E'P. But then we can construct the following derivation, which is impossible according 
to what we proved above: 

ß;0=?0 Lß 
ß;</>=?0 

ß;fn=?En 
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Therefore, .6. U (r 00 n .C) is consistent. 
Right now, we define a classical model M, the existence of which is guaranteed by ('Y) 

and (8), in the following way: VM((.6. ur oo) n P) = 1 and VM((.6. u ~oo) n P) = 0. This 
model has the following desired characteristics: 

(E) If yi1Ef00 , then VM(cP) = 1. 

(() If yilE~00 , then VM(cP) = 0. 

A proof of (E) and (() is obtained by induction on the number of logical operators of 
yil, using (ß) and the table indicating the rules of construction of .6.; r n+l => ~n+l froril 
.6.; r n => ~n· The basis of the induction is correct by definition of M. Let US suppose that 
the assertion to be proved is correct for every 'I/; with less logical operators than yil. Now, 
we split cases according to the principal operator of yil. Leaving all other cases aside, we 
shall consider the case where yil = 'lj;1 V'lj;2 and 'lj;1 V7f;2 Er 00 • According to (ß), there is an 
such that .6.; f~, 7/J1 V'lf;2 => ~n, where f n = f~, 7/J1 V7/J2. Therefore, 7/J1 E f n+l or 7/J2 E f n+l· 

By our induction hypothesis, we have VM(7/J 1 ) = 1 or VM('l/J2) = 1. Hence VM(7/J1V1/J2) = 1. 
Therefore, M is a 'witness' (in the technical sense of the word) of the following claim: 

::JM(VM(.6.) = 1) and ::JM(VM(.6., r) = 1 /\ VM(~) =0). Hence, .6.; r 176* ~. 
The procedure of proving (ii) is completely analogous to (i).• 

As the preceding theorem closes the circle of theorems, let us summarize the results of 
this and the previous sections in the following theorem: 

Theorem 7 .2 Let f ~ F be a multiset and yil E F and .6. ~ .C. Then 

(i) 
(ii) 

.6.;f f--* cP ~ f--* .6.;f=>yil ~ 

.6.; r --1· y11 ~ --1· .6.; r => y11 ~ 

.6.; r F=* <P 

.6.; r ~· </J . 

It turns out to be the case that the usual notions of 'validity' and 'derivability' are special 
cases of the more general notions of 'validity with respect to a literal basis' and 'derivability 
with respect to a literal basis' which have been defined in this paper. As a corollary of 
the previous theorem, we can, putting .6. = 0, state the following well-known theorem: 

Corollary 7.3 Let f~F be a multiset and </JEF. Then 

(i) 
(ii) 

8 Conclusion 

ff--</J ~ 
f--1</J ~ 

f-- r=><P ~ r F= <P 

--1 f=><P ~ r ~ </J. 

The results in this paper show that, contrary to the existing literature on logics of re
jection, it is possible to stick to the standard proof-theoretical structures in deriving all 
non-theorems of GPL. Moreover, not only are tautologies and contradictions each other's 
duals, but this also holds for satisfiable and rejectable formulas. Surprisingly, this duality 
can be extended to the metatheory in which the proofs about the systems are formulated. 

Moreover, I would like to draw attention once again to the fact that in the systems 
NDT* and NDC* the construction of a proof involves the building of an auxiliary model, 
the consistency of which is guaranteed by the conditions on the application of the branch
ing rules. In this way, semantical concepts like 'satisfiability' and 'rejectability' can be 
modelled proof-theoretically. 
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There is a close and interesting connection between the system proving satisfiability 
described above and Veltman's system for GPL, including an operator 'might' in the 
language, presented in [9], 227-231. Given the consistency of a set of beliefs r, Veltman 
develops a logic characterizing the statements which might be true, i.e., the statements 
which are satisfiable, given the truth of the set of beliefs r. To map these ideas into the 
systems presented in this paper, an additional constraint on the use of literals must be 
f~rmulated: the set ß of literals used in the derivations must be consistent with the set 
of beliefs r. lt should be clear from the start that there may be jointly inconsistent sets 
ß 1 and ß 2 such that both ß 1 ur and ß 2 ur are consistent. At any rate, this poses some 
questions for future research. 
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